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1. Introduction 
 

PhyloBayes is a Bayesian Monte Carlo Markov Chain (MCMC) sampler for phylogenetic 
reconstruction and molecular dating using protein and nucleic acid alignments. Compared to other 
phylogenetic MCMC samplers, the main distinguishing feature of PhyloBayes is the use of non-
parametric methods for modelling site-specific features of sequence evolution. 
 
PhyoBayes3.1, implements a wide spectrum of probabilistic models, among which:  
- non-parametric models of site-specific rates, of equilibrium frequency profiles, or even, of the entire 
GTR matrix. All this using a combination of independent Dirichlet processes. 
- Tuffley and Steel's covarion model, as well as the mixture of branch length (mbl) models. 
- empirical mixtures of profiles, or of matrices. 
- auto-correlated and non auto-correlated models of clock relaxation, meant for molecular dating 
 

Modelling site-specific effects using non-parametric methods 

 
In general, each position of a gene is under a very specific selective constraint. This fact has 
fundamental consequences for phylogenetic reconstruction. For instance, more constrained sites are 
slower, and less constrained sites are faster. Similarly, only a subset of the possible states (4 nucleic 
acids or 20 amino-acids) is likely to be accepted at a given position during evolutionary times. 
 
This suggests that the overall rate of substitution, the equilibrium frequency profile (more briefly called 
profile in the following) of the substitution process, or even the entire substitution matrix, should be 
modeled as site-specific random variables. As has been shown in several previous works, accounting 
for such variations across sites is indeed crucial, both to obtain a better statistical fit and to alleviate 
phylogenetic artifacts, due to long branch attraction phenomena. 
  

There are two ways site-specific evolutionary propensities can be modeled. First, one can use a 
parametric model. In such models, the parametric form of the law describing the distribution of the 
site-specific feature under investigation is assumed known, up to a few parameters that will be 
estimated from the data. The best example is the use of a Gamma distribution for modeling the 
distribution of relative rates of substitution across sites (Yang, 1994). 
  
Alternatively, one can use non-parametric models: the general idea of non-parametric model is that the 
overall shape of the distribution across sites is not specified a priori, but is itself directly inferred from 
the data. Thus, it is much more general than the parametric method. On the other hand, it requires more 
data (since more is learnt from them). 
 
There are many different ways to make non-parametric models. A practical approach, often adopted in 
Bayesian inference, is the use of Dirichlet process mixtures. These are infinite mixtures (in practice, 
mixture models whose number of categories is not directly specified, but integrated over a prior 
distribution). 
 
PhyloBayes uses a combination of two independent Dirichlet processes: one for modeling the site-
specific rates (Huelsenbeck and Suchard, 2007), and another one aimed at describing the sites-specific 
profiles (Lartillot and Philippe, 2004). Through this combination, each site is given a rate and a 



frequency vector profile over the 20 amino-acids or the 4 bases. These are combined with a globally 
defined set of exchange rates, so as to yield site-specific substitution processes. The global exchange 
rates can be fixed to flat values (the CAT-Poisson, or more simply, CAT, settings), or inferred from the  
data (CAT-GTR settings). 
 
In the QMM ('Q-Matrix Mixture') model, the second Dirichlet process is not defined only on the 
equilibrium frequency profile, but on the entire rate matrix (Q-matrix): in that case, and contrarily to 
what happens in the CAT-GTR model, sites do not share the same exchange rates. However, the QMM 
model seems in fact to be less fit than the simpler CAT-GTR version, with global exchange rates 
shared by all sites. 
 

Empirical mixture models 

 
The non-parametric models introduced above are very flexible. They automatically estimate the 
distribution of site-specific effects underlying each dataset. But on the other hand, they may require a 
fairly large amount of data for correct estimation. 
 
An alternative that would be suitable for smaller alignments is offered by the so-called empirical 

mixture models. Unlike non-parametric mixtures, empirical models have a fixed, pre-determined, set of 
components, which have been estimated on a large database of multiple sequence alignments. Classical 
empirical matrices, such as JTT, WAG, and the more recent LG (Le and Gascuel, 2007) are a specific 
case of empirical model, with only one component. Recently, empirical mixtures have been proposed: 
either mixtures of profiles (Le et al 2008, Wang et al 2008), or mixtures of 2 or 3 matrices (Le et al, 
2008b). All these models are implemented in the current version of PhyloBayes. The user can also 
specify its own custom set of exchange rates, mixture of profiles, or mixture of matrices.  

Phylogenetic reconstruction and molecular dating 

 
Once a sample is obtained, it can be marginalized over the parameters of interest. Most often, people 
are interested in the phylogenetic tree itself: here, PhyloBayes works like usual Bayesian phylogenetic 
reconstruction programs, and outputs a majority rule posterior consensus tree. But conversely, you 
might be interested in the site-specific biochemical specificities that have been captured by CAT, or 
some other site-specific or mixture model. In that case, you can read out the mean posterior site-
specific rates and profiles, which are also directly available from the MCMC output. Note that, in 
contrast to usual sequence profiles, these site-specific features are corrected for the phylogenetic 
correlations between the sequences. You may also be interested in the goodness-of-fit of the model, 
which can be assessed by Bayes factors, cross-validations, or posterior predictive resampling 
procedures. 
 

Finally, PhyloBayes can be used to perform Bayesian molecular dating using relaxed molecular 
clocks. Several alternative clock relaxation models are available, including the popular log-normal 
auto-correlated model of Thorne et al. (1998), the CIR process of Lepage et al (2007). Fossil 
calibrations can be provided as hard (as in Kishino et al 2001) or as soft (as in Yang and Rannala 2006) 
constraints. 
 
 
  



Choosing the right model 

 
It is still difficult to give a general idea of the relative merits of the models, as it depends on the dataset, 
and on the criterion used to measure the fit.  But a few trends are observed, which can be used for 
establishing general guidelines. 
 
Amino-acid replacement models 

  
- For large datasets (more than 1,000 aligned positions), CAT-GTR is virtually always the model with 
highest fit among all models implemented in PhyloBayes, whether non-parametric or empirical. 
 
- CAT is less fit than CAT-GTR, but generally better than one-matrix or empirical models on large 
datasets. 
  
- Empirical mixture models (UL3, C60 or WLSR5) may be ideal for single gene datasets. 
 
- Concerning the posterior consensus tree, both CAT and CAT-GTR seem to be significantly more 
robust against long branch attraction artifacts, compared to all other models (although the empirical 
mixtures still need to be investigated in more details for their phylogenetic accuracy). In addition, CAT 
seems to yield more 'skeptical' outputs (lower posterior probabilities) compared to CAT-GTR. 
 
- Concerning computational efficiency, CAT is by far the most efficient settings. Thus, for large 
datasets, CAT probably remains the best option, in particular when there is a high level of saturation. 
However, comparing the results obtained under CAT, CAT-GTR and GTR (or returned by other 
programs), whenever possible, is important. 
 
Nucleotide substitution models 

 
Very few options are implemented for nucleic acid data in Phylobayes, which is primarily devoted to 
amino-acid data. However, the CAT-GTR model is probably a very good model for DNA or RNA data. 
 
Rates across sites 

 
The Dirichlet process over the rates (as in Huelsenbeck and Suchard, 2007) is probably better than the 
more classical discrete gamma distribution with 4 categories (although this question would require 
more detailed investigations). Thanks to parameter expansion, this model also requires less RAM, and 
is faster on a per-cycle basis, than the gamma. On the other hand, parameter expansion may sometimes 
result in MCMC convergence and mixing difficulties.



2. Downloading and installing PhyloBayes: 
 
PhyloBayes is freely available. It can be downloaded from www.phylobayes.org. It is provided as a 
zipped file phylobayes3.1.tar.gz. There are several pre-compiled versions, for mac, linux 64 

bits and windows. 
 
Once unzipped, the downloaded file will release a directory, phylobayes3.1, containing several 

subdirectories: sources containing the source files; data, contaning the data files; several exe_ 

directories containing the binary files for mac, linux and windows, and aux, containing auxiliary files 

(necessary for optional postscript outputs). If you need or wish to recompile, simply go into the 
sources directory, and use the following command: 
 

make 
 

This will put new binaries directly into the data directory. Since the CIR clock relaxation model 

(Lepage et al, 2007) requires functions from the gsl library, to make compiling as simple as possible 

for everyone, the CIR has been deactivated by default. Thus, to compile as described above, you should 
not need anything particular pre-installed on your computer. In particular, you do not need to install the 
gsl library. But on the other hand, you will not be able to use CIR. Conversely, if you want to use the 

CIR model, you need to activate a compilation in the Makefile (at the very beginning of the file, 
remove the '#' in front of USE_GSL=-DGSL). Of course, you then need gsl to be installed. 
 

The general philosophy of PhyloBayes is a bit different from other programs: rather than having one 
single program that does everything, through standard input and output streams (i.e. keyboard and 
screen), several small programs have been written, working more or less like unix commands using 
input and output files. The detailed model and Monte Carlo settings can be controlled through options, 
starting with the usual hyphen ’-’. 
 

The program files can be put anywhere. For instance, you can copy the relevant binaries (depending on 
your operating system) into the data directory. Then you can create subdirectories in data, which 

will contain all your analyses using PhyloBayes (for instance, one distinct sub-directory for each 
phylogenetic session made of related analyses on the same dataset). Alternatively you can put the 
programs in /usr/bin/, if you want to have access to them from anywhere in your file system. 
 

Finally, for the postscript options to work, first, LateX and dvips have to be installed, and second, a 
global variable needs to be specified, e.g. by writing the following two lines at the end of the 
.bashrc file which is in your home directory: 
 

set PBPATH = .../aux_ps/ 
export PBPATH 
 
The ".../" in front of aux/ should be replaced by the path leading to where exactly you have put the 

aux directory. Note, however, that all programs output only plain text files by default. Therefore, as 

long as you do not explicitely ask for postscript outputs (using the -ps option), all of them will work 

even if this path has not been specified.



3. Input Data Format 
 

Sequences 
 

Two main formats are recognised: NEXUS, and a generalisation of the PHYLIP format, formatted as 
follows : 
 
<number_of_taxa> <number_of_sites> 
taxon1 sequence1... 
taxon2 sequence2... 
... 
 
Taxon names may contain more than 10 characters. Sequences can be interrupted by space and tab, but 
not by return characters. Be sure that the lengths of the sequences are all the same, and identical to the 
lengths indicated in the header. Sequences can be interleaved, in which case the taxon names may or 
may not be repeated in each block. 
 

The following characters will be considered all equivalent to "missing data":  '- ? $ . * X x', as well as 
the degenerate bases of nucleic acid sequences ('B','D','H','K','M','N','R','S','V','W','Y'), and the 'B' and 
'Z' characters for protein sequences. Upper or lower case sequences are both recognised, but the case 
matters for taxon names. 
 

Trees 
 

In some cases, an initial tree can be provided, or the program can be constrained to sample the posterior 
distribution of parameters under a specified tree topology, which will the remained fixed throughout 
the analysis. Trees should be provided in NEWICK format, e.g.:  
 
(taxon1,(taxon2,taxon3),(taxon4,taxon5)); 
 
or 
 
((taxon1,(taxon2,taxon3)),(taxon4,taxon5)); 
 
The first tree is unrooted, the second is rooted. Both are recognised. Branch lengths can be specified, 
but will be ignored. Trees should always be followed by a ';' and should not contain spaces or tabs. 
 

Taxon names should correspond to the names specified in the data matrix (case sensitive). 
Alternatively, you can provide integer labels, in which case the order of the taxa provided by the 
datafile is considered. In the case where names are used: if some names are present in the tree, but not 
in the matrix, the corresponding taxa will be pruned out of the tree. That is, the spanning subtree 
containing all the taxa mentioned in the data matrix will be considered as the input tree. Conversely, if 
some taxa are present in the data matrix, but not in the input tree, this will generate an error message. 
 



Outgroups 

 
For molecular dating, a tree needs to be specified, and its rooting matters. If a rooted tree is given as an 
input, it is used as such. If an unrooted tree is given, an outgroup has to be specified to the program. 
For this, the outgroup has to be written into a file according to the following format: 
 
<number of taxa> 
<taxon1> 
<taxon2> 
... 
 

All the taxa making the outgroup should be specified. They should correspond to a split of the tree. 
 

Calibrations 

 
Molecular dating requires fossil calibrations to be specified. The format is as follows: 
 
<ncalib> 
<taxon1a> <taxon1b> <upper_limit> <lower_limit> 
<taxon2a> <taxon2b> <upper_limit> <lower_limit> 
... 
 

The calibration given on each line will be imposed onto the last common ancestor of the two specified 
taxa. Upper limits are older, and thus, should always specify larger numbers than lower limits. The only 
exception is that upper or lower limits can be set equal to -1, in which case no limit is enforced. For 
example ; 
 
taxon1 taxon2 -1 50 
 
means that the node of the last commmon ancestor of taxon1 and taxon2 should be older than 50 
Million years (My), but otherwise, does not have an upper constraint. Likewise: 
 
taxon1 taxon2 70 -1 
 
only specifies an upper constraint of 70 My, and no lower constraint. And finally: 
 
taxon1 taxon2 70 50 
 
specifies an upper and a lower constraint, thus the interval [50,70] My. 
 
 



4. General presentation of the programs: 
 
There are 11 different programs in the package (for details about any of these programs type its name 
without any argument to get an online help): 
 

pb/stoppb : runs and stops the MCMC sampling proper. 

readpb : post-analysis program, that returns the posterior consensus tree, as well as a variety of 

posterior averages. 
bpcomp : evaluates the discrepancy of bipartition frequencies between two or more independent runs, 

and computes a consensus by pooling the trees of all the runs being compared. 
tracecomp : evaluates the discrepancy between two or more independent runs, based on the 

summary variables provided in the files. 
ppred : performs posterior predictive analyses. 

readdiv : post-analysis program for relaxed clock analyses. 

bf : for comparing relaxed clock models by Bayes factor numerical evaluation. 

cvrep/readcv/sumcv : for comparing models by cross-validation. 

tree2ps : converts a tree in newick format into a postscript file. 
 

In this section, a rapid tour of the programs is proposed. A more detailed explanation of all available 
options for each program is done in the next section. 
 

Running a chain (pb / stoppb) 

 
A run of the main program of PhyloBayes (pb) will produce a series of points drawn from the posterior 

distribution over the parameters of the model. Each point defines a value for all these parameters 
(which include the tree topology, the branch lengths, the biochemical profiles of the mixture, etc.). The 
series of points defines a Monte Carlo Markov chain, or more simply, a chain. 
 

Each time you create a new chain, you give it a name. An example is given in the package: the 
phylobayes/data/brpo/ directory contains a file named brpo.ali, which is an alignment of 

eukaryotic RNA polymerases. To conduct an inference on this data set, first go into the brpo 

directory. From there, you can create a new chain, of name rnapol1: 
 

../pb -d brpo.ali rnapol1 
 
The "../" pathway may be modified depending on where exactly you have put the program. It will be 

omitted in the following. The -d option allows you to specify the dataset. There are many other 

options for specifying the model (see below), but the default options (CAT + Gamma) are fine (at least, 
for proteins). Before starting, the chain will output a summary of the settings on the screen. 
 
It is often more convenient to run the chain in background. You can also make two independent chains 
in parallel: 
 

pb -d brpo.ali rnapol1 & 
pb -d brpo.ali rnapol2 & 
 



A series of files will be produced, whose names all start with the name of the chain, combined with a 
variety of extensions. The most important are: 
<name>.treelist: list of sampled trees. 

<name>.trace: the trace file, containing a few relevant statistics (e.g. number of generations, log-

likelihood, total length of the tree, number of components in the mixture), which can help you checking 
how fast the chain equilibrates, and how long you will need to run it. The best is to plot the evolution of 
a few of these statistics, as a function of time, to check for the absence of trend in the long run. 
 

The chains will run as long as you let them run. You can stop, interrupt, or even kill them at any time, 
and restart them afterwards. In that case, they will resume from the last point that was saved before the 
interruption. To soft-stop a chain, just type stoppb <name>, e.g. : 

 
stoppb rnapol1 
 
The chain will finish the current cycle before exiting. To restart an already existing chain :  pb 
<name> (be careful not to restart an already running chain). In our example : 
 

pb rnapol1 & 
 

Checking for convergence (bpcomp and tracecomp) 
 

The program saves one point after each cycle. A cycle itself is made of a varying number of 
generations: specifically, the number of generations (second column of the trace file) is defined in 
PhyloBayes as the number of elementary topological updates tried during a cycle. This number is not 
constant across cycles, because PhyloBayes implements recursive 'waves' of topological updates along 
the tree, whose number of steps might depend on the current topology. 
 

In any case, the absolute number of generations performed by a MCMC sampler is not really a relevant 
measure of the quality of the resulting sample: update mechanisms for the mixture, the topology, or the 
hyperparameters, are not really comparable, and their mixing efficiency depends very much on the 
model, the data, and the implementation. We therefore need other ways of estimating when to stop the 
run, and how much burn-in to discard. 
 

First, one can monitor the evolution of the log-likelihood and other statistics as a function of time. This 
will be a good indication of how well the profile-mixture has reached the stationary state. But on the 
other hand, it will not be sufficient, and furthermore, it lacks an objective basis. 
 
An alternative is to run two (or more) chains in parallel, and compare the posterior distributions 
obtained under these several independent runs. Two main classes of variables can be considered: the 
summary variables that are displaed in the trace files, and the bipartition frequencies. The first is done 
using the tracecomp program, and the second using the bpcomp program. Both use the same 

syntax: 
 

bpcomp -x 100 2 rnapol1 rnapol2 
 

Here, with a burn-in of 100, and taking every 2 trees (-x 100 2), the bpcomp program will output the 

largest (maxdiff) and mean (meandiff) discrepancy observed across all bipartitions (maxdiff). 

If in addition you specify an output file : 
 



bpcomp -x 100 2 -o rnapol rnapol1 rnapol2 
 
it will give you a detailed comparison of the frequency of all the bipartitions observed in the chains 
being compared, and will output a consensus tree made by pooling all the trees of all the chains. 
 
Some guidelines : 
 

-  maxdiff < 0.1 : good run. 

-  maxdiff < 0.3 : acceptable: gives a good qualitative picture of the posterior consensus. 

-  0.3 < maxdiff < 1 : the sample is not big yet enough, but it seems to be on the right track. 

-  if maxdiff = 1, even after 10,000 points, this is really bad : it indicates that at least one of the runs 

is stuck in a local maximum. 
 
Similarly: 
 

tracecomp -x 100 2 rnapol1 rnapol2 
 
will produce an output summarizing the discrepancies and the effective sizes estimated for each column 
of the trace file. The discrepancy is defined as D=2|m1 - m2| / (s1 + s2), where mi is the mean and si 
the standard deviation associated with a particular column, and i runs over the chains. The effective 
size is evaluated using the method of Geyer (1992). The guidelines are: 
 
- maximum discrepancy < 0.1 and minimum effective size > 100 : good run, 
- maximum discrepancy < 0.3 and minimum effective size > 50 : acceptable run. 
 

Automatic stopping rule (pb) 
 

The program now has an option to run several chains in parallel, regularly probing the convergence, 
and stopping automatically as soon as 
- the bipartition (maxdiff) and summary variable discrepancies all become lower than a specified 

threshold c. 
- the effective sizes associated to all summary variables are all larger than a specified minimum size. 
The burnin is chosen as 1/5 of the chain's length. Thus: 
 
pb -d brpo.ali -nchain 2 100 0.3 50 rnapol 
 
will run 2 chains in parallel, for a minimum of 500 cycles. Then, every 100 cycles, a bpcomp and a 

tracecomp between the two chains are automatically done (with a burnin equal to one fifth of the 

total length of the chain) and the run stops once all the discrepancies are lower or equal to 0.3 and all 
effective sizes are larger than 50. 
 
Note however that the two chains are run on the same processor, which is different from the situation 
above, where the two chains could potentially be run on two different processors. Thus, it will take 
about twice as much time to accomplish the same number of cycles. On the other hand, the program is 
devised so that the two chains do not run simultaneously, but are just 'intertwined': that is, chain 1 runs 
for one cycle, then chain 2 runs for 1 cycle, and then both are saved, and so on. In this way, the two 
chains can share most the RAM they need, and do not 'overcrowd' the processor on which they run. 
 



Post-analysis (readpb) 

 
Once a chain has been obtained, one usually removes the first few hundreds of points (the so-called 
burn-in), and use the remaining points to compute averages (posterior consensus, mean site-specific 
profiles, etc.). All this is done with the readbp program. The series of points that is used by readpb to 

compute averages is called a sample (understand : a (sub-)sample of points taken from a chain). 
 

Following our example : 
 
readpb -x 100 10 rnapol1 
 
will take one tree every ten, discarding the first 10 trees. It will produce a few additional files, among 
which : 
 
rnapol1_sample.general, containing a few general statistical averages (mean posterior log 

likelihood, tree length, alpha parameter, number of modes, etc.) 
rnapol1_sample.con.tre : the majority-rule posterior consensus tree 

rnapol1_sample.bplist : the list of weighted bipartitions. 
 

Various options allow you to compute several other posterior averages, such as site-specific rates and 
equilibrium frequency profiles. 
 

Estimating divergence times (pb / readdiv). 
 

PhyloBayes includes a variety of clock relaxation models, including the log-normal auto-correlated 
model, as in Thorne et al. (1998), and the CIR process (Lepage et al., 2007). It can work with or 
without the normal approximation, and in the latter case, using any of the substitution models 
implemented in the program. In particular, thanks to a better estimation of multiple substitutions (see 
Lartillot et al, 2007), CAT could turn out to be a better model for estimating branch lengths, and 
therefore also divergence times. 
 

Molecular dating can be done using pb program. It only works under a fixed topology, that has to be 

specified using the -T option. The molecular dating option of pb is activated by specifying a model of 

clock relaxation. An example is proposed in the package, in the moc directory: 

 
pb -d moc.ali -T moc.tree -ln mocln1 
 

Here, log-normal autocorrelated rates are assumed (-ln option), but this can be changed using the 

relevant options. Unless specified otherwise, pb assumes that the tree is correctly rooted. Note that if 

no relaxed clock model were specified, the program would simply sample parameters assuming the 
usual deconstrained model, which is non time-aware and directly infers the branch lengths in expected 
number of substitutions. 
 

Any substitution model can be used for estimating divergence times. You can also run chains under the 
normal approximation : 
 
pb -cov <oesfile> -ln <name> 
 



where <oesfile> is a "estbranches" file, containing a tree,with ML branch lengths, and a variance 

covariance matrix. Any file obtained using estbranches will be accepted here, after the -cov option. 

One such file (moc10.oes) is provided in the package (from Douzery et al, 2004): 

 
pb -cov moc10.oes mocoesln1 
 

If you do not provide any calibration, you will get relative age estimates: by definition, the root will 
have age 100, and the leaves age 0. Alternatively, you can specify a set of calibrations in a file (here 
calib), having the relevant format (see above, format section): 
 

pb -d moc.ali -T moc.tree -r bikont.outgroup -ln -cal calib name 
 
Once a chain has been obtained, you can read out the posterior mean node ages using readdiv: 

 
../readdiv -x 100 1 <chainname> 
 
this will output a chronogram (<chainname>_sample.chronogram), as well as a file containing 

the list of divergence times, with standard errors (<chainname>_sample.dates). The labels of 

the nodes are indicated in a specific tree, in the file with the ".labels" extension. 
 

Model evaluation. 
 

Apart from computing averages from the posterior distribution, Bayesian inference also allows for 
model comparison and goodness-of-fit analyses. Model comparison often consists in computing Bayes 
factors. However, numerical evaluation of Bayes factor is a very difficult task. Simple estimators often 
fail. For instance, the popular harmonic mean estimator is not reliable (Lartillot and Philippe, 2006), 
and is thus not implemented here. Path sampling, or thermodynamic integration, is more reliable, and 
we have used it previously for comparing phylogenetic models (Lartillot and Philippe 2006). But it is 
time-consuming, and is not implemented here for general substitution models. In the present version, 
we only provide thermodynamic integration for comparing clock models under the normal-
approximation: this can be done using the program called bf. 
 

For example: 
 
bf -cov moc10.oes -ln moc10ln 
 
will compute the Bayes factor between the log-normal and the deconstrained model. You can do this 
for several models, and then choose the model returning the largest Bayes factor. 
 

Apart from Bayes factors, another general model comparison method in Bayesian inference is cross-
validation. It is implemented in the PhyloBayes package. The exact procedure is a bit involved, and is 
explained at the end of this manual. 
 

Finally, models can also be assessed by posterior predictive resampling, which is the Bayesian 
equivalent of the parametric boostrap often used in Maximum Likelihood. The idea is to compare the 
observed value of a given test statistic s on the true data, with the distribution of s on data replicates 
simulated under the reference model. If the observed value of s deviates significanlty, this means that 
the reference model is rejected. 



 

According to parametric boostrap, replicates should be simulated under the ML value of the parameter. 
The posterior predictive formalism is slightly different: simulations should instead be performed using 
parameter values drawn from the posterior distribution. This has the advantage of ‘smoothing out’ your 
null distribution with respect to the uncertainty over your parameter estimates. On the other hand, the 
test may then be sensitive to the prior distribution. 
 
Posterior predictive resampling can be done using the ppred program. By default, ppred takes a 

chain as an argument (like readpb), and for each point of the sample, simulates a series of replicates 

of the dataset using the topology and the parameters defined by the current point. For instance, say you 
have run a chain of length 1100 points, under the wag model: 
 

pb -d brpo.ali -x 1 1100 -wag brpowag1 
 
Once this chain is done, you can then use it to obtain a series of 100 replicates using ppred: 
 

ppred -x 100 10 brpowag1 
 
Here, the options tell ppred to take one point every 10, after a burn-in of 100, and use the parameters 

defined by each of these points to simulate replicates. Once replicates have been obtained, any test 
statistic which can be computed on the true dataset (e.g. compositional deviation of a given taxon) can 
also be computed on each of the replicates, which give a null distribution, with which to compare the 
true value obtained on the original dataset. The implementation of the test statistisc is left to the user, 
except for 3 pre-defined statistics: saturation, site-specificity, and compositional homogeneity. 
 



5. Detailed program options. 
 

pb 

 

General options: 

 
-d <datafile> 
 
allows one to specify a file containing aligned sequences. For the exact specifications of the formats 
accepted by the program, see above (see: Input Data Format). 
 

-dc 
 
constants sites are removed. 
  

-cov <varcovar> 
 
specifies a variance-covariance matrix. This matrix can be a file produced by the estbranches 

program of Thorne et al.  
 

-t <treefile>  
 
forces the chain to start from specified tree. 
 
-T <treeefile> 
 
constrains the chain to run under the topology specified in <treefile>. It will thus only samples 

from the posterior distribution over all other parameters (branch lengths, alpha parameter, etc.), 
conditional on the specified topology. 
 
-r <outgroup> 
 

re-roots the tree, using the specified outgroup, before starting the chain. Current substitution models 
implemented in PhyloBayes are reversible, so this rerooting is useful only for clock models. 
 

-s  
 
in order to save disk space, by default the current version only saves the trees explored by the chain 
during MCMC. This is enough if what you want to do is only computing a consensus tree. However, if 
you wish to do a more detailed analysis, such as looking at the site-specific biochemical profiles, or 
perform posterior predictive tests, then, you need the program to save the whole parameter vector for 
each visited point, and not only the current tree. The -s option is meant for this. 
 

Fixed topology analyses (where you have used the -T option to constrain the tree topology) will 

automatically activate the -s option. 
 



-f 
 
forces the program to overwrite an already existing chain with same name. 
 
-x <every> [<until>] 
 
specifies the saving frequency, and (optional) the number of points after which the chain should stop. If 
this number is not specified, the chain runs 'forever'. By definition, -x 1 corresponds to the default 

saving frequency (a cycle is not a well defined concept in MCMC programs: it is very model AND 
implementation dependent). In some cases, you may realise that your samples are very correlated, and 
that they are taking too much space on your hard-drive. In that case, it would make sense to save points 
less frequently, say 10 times less often: then, you should use the -x 10 option. 

 
-nchain <nchain> [<step> <cutoff> <eff_size>] 
 
runs nchain chains in parallel, for a minimum of burnin_factor x step cycles, where 

burnin_factor is a parameter equal to 5 by default; then, every step cycles, checks (using 

bpcomp and tracecomp) the discrepancy between the two chains and the effective sample sizes, and 

stops if this discrepancies are below the specified cutoff, and the effective sample sizes are larger 

than the specified eff_size. 

 
-b <burnin_factor> 
 
tunes the burnin-factor parameter. This parameter is is used to define the burnin when checking for the 
convergence of independent chains (see -nchain option). It is equal to 5 by default (thus, by default, 

the burnin is 1/5 of the total length of the chains). 
 

Evolutionary models 

 
Prior on branch lengths: 
 
-lexp : prior on branch lengths is a product of i.i.d. exponential distributions. 

  
-lgam : prior on branch lengths is a product of i.i.d. gamma distributions (this is more flexible than 

the exponential, as it allows to independently control the mean and the variance of the branch length 
distribution). 
  
-meanlength <meanlength> : fixes the mean of the exponential (or gamma) priors to the 

specified value. Without this command, this mean is considered as a free parameter, endowed with an 
exponential prior of mean 0.1. In the case of the gamma prior, the variance/mean ratio is always 
considered as a free parameter, with en exponential prior of mean 1. 
  
Rates across sites: 
 
-ratecat : the distribution of rates across sites is emulated by a Dirichlet process (as in Huelsenbeck 

and Suchard, 2007). 
 



-uni : uniform-rate model. 

 
-cgam : continuous gamma distribution. 

 
-dgam [<n>] : discrete gamma distribution with <n> categories. 

 
The default model is the Dirichlet process. 
 
Relative exchangeabilities (exchange rates): 

 
-poi (or -poisson): exchange rates all equal to 1. The model is then a mixture of Poisson 

(Felsenstein81) processes. 
 
-wag, -jtt, -mtrev: empirical exchange rates (Jones and Taylor, 1992, Whelan and Goldman, 

2002, Adachi and Hasegawa 1996). 
 

-lg: empirical exchange rates obtained by Le and Gascuel 2008. 
 

-gtr: general time reversible matrix: exchange rates are free parameters, with prior distribution a 

product of independent exponential distributions of mean 1. 
 
-rr -gtr <filename>: exchange rates are fixed, according to the specifications provided by the 

specified file. The file should read as follows: 
 
[<ALPHABET>] 
<rr1_2> <rr1_3>   ...    <rr1_20> 
<rr2_3> <rr2_4>  ... <rr2_20> 
... 
<rr18_19> <rr18_20> 
<rr19_20> 
 
You may specify the order in which amino acids should be considered on the first line 
([<ALPHABET>]). Letters should be separated by spaces, tabs or returns. By default, if you do not 

specify it, this will be the alphabetical order of the one letter code (A C D E F G H I K L M N P Q R S 
T V W Y), in which case the order in which the file would have to specify the relative rates should be 
as follows: between A and C, then between A and D ... between A and Y on the first line; then on the 
second line, between C and D, etc. Tabulations, spaces and returns are all considered equivalent: only 
the order in which all these real numbers are specified is important. 
 
Profile mixture: 
 
-cat : Dirichlet process (number of components, weights and profiles are all inferred from the data). 

 
-ncat <n> : mixture of <n> profiles. (number of components is fixed, profiles and associated 

weights are inferred). 
 
By default, the Dirichlet process is activated. Fixing the number of components of the mixture (-
ncat <n>) yields a poor mixing. 



 
 
Empirical profile mixture models: 

 
-catfix <predef> : mixture of a set of pre-defined profiles (only the weights are inferred). 

<predef> can be either one of the following keywords: C20, C30, C40, C50, C60, which correspond 

to empirical profile mixture models, learnt on the HSSP database (Le et al, 2008); or WLSR5, which 
correspond to the model of Wang et al, 2008. Note that this latter model actually defines 4 empirical 
profiles, which are then combined with a fifth component made of the empirical frequencies of the 
dataset. 
 
-catfix <filename> : where <filename> is the name of a file containing a set of profiles 

specified as follows: 
 

[<ALPHABET>] 
<ncat> 
<freq1> <freq2> ... <freq20> 
<freq1> <freq2> ... <freq20> 
... 
 
where <ncat> is the number of profiles, and each line following this number should be a set of 20 real 

numbers, defining a profile of equilibrium frequencies. You may specify the order in which amino 
acids should be considered on the first line ([<ALPHABET>]). Letters should be separated by spaces, 

tabs or returns. By default, if you do not specify it, this will be the alphabetical order of the one letter 
code. Tabulations, spaces and returns are all considered equivalent. 
 
Combining profiles and exchange rates: 

 
Any set of exchange rates can be combined with any of the three settings for the mixture. But the 
SAME set of exchange rates will be used by all components. To have different sets of exchange rates, 
see below (matrix mixture models) 
 
For instance, -cat -gtr makes an infinite mixture model whose components differ by their 

equilibrium frequencies, but otherwise share the same set of relative exchange rates (themselves 
considered as free parameters). As another example, -catfix WLSR5 -jtt defines the Wang et al 

2008 model: a model with 5 components, each of which is a matrix made from the relative exchange 
rates of the JTT matrix, combined with one of the 4 vectors of equilibrium frequencies defined by 
Wang et al 2008, plus one vector of empirical frequencies. 
 
The default model is -cat -poi, that is, a mixture of Poisson (Felsenstein1981) processes. The 

program works best under those conditions.  
 

Note also that, if you activate non-Poisson exchange rates, the mixture model is automatically 
desactivated by default: you only have one such matrix, conditioning all the sites. Thus, the -gtr 

option is equivalent to -gtr -ncat 1. Thus if you want a Dirichlet process combined with a GTR 

matrix of exchange rates, you have to EXPLICITELY call it -gtr -cat. 

 
 



Matrix mixture models: 
 
-qmm: activates the QMM model, which is a mixture of matrices (thus, allowing for DISTINCT sets of 

exchange rates and equilibrium frequencies for each component of the mixture). 
 
-qmmfix ul2 or -qmmfix ul3: defines the empirical mixture with 2 or 3 components (Le et al, 

2007b). 
 
-qmmfix <filename>; where filename is the name of a file containing a set of matrices specified 

as follows: 
 
[<ALPHABET>] 
 
<ncat> 
 
<freq1> <freq2> ... <freq20> 
<rr1_2> <rr1_3>    ...   <rr1_20> 
<rr2_3> <rr2_4> ...  <rr2_20> 
... 
<rr19_20> 
 
<freq1> <freq2> ... <freq20> 
<rr1_2> <rr1_3>    ...   <rr1_20> 
<rr2_3> <rr2_4> ...  <rr2_20> 
... 
<rr19_20> 
 
... 
As for profile mixtures, you may specify the order in which amino acids should be considered on the 
first line ([<ALPHABET>]). Letters should be separated by spaces, tabs or returns. By default, if you 

do not specify it, this will be the alphabetical order of the one letter code. Tabulations, spaces and 
returns are all considered equivalent: only the order in which all this real numbers are specified is 
important. 
 
Weights of mixture components: 

 
By default, the weights are free parameters (endowed with a uniform Dirichlet prior). 
 
-fxw : In case you use one of the pre-specified mixtures C10 to C60, the weights are fixed to the 

values estimated on the training HSSP database. In all other cases (other pre-specified profile and 
matrix mixtures, or custom mixtures), the weights are fixed, and set all equal. Thus, this option is 
interesting only when using empirical profile mixtures on very small datasets. 
 
Heterotachy: 

 
-covarion: Tuffley and Steel's covarion model. This can be combined with any of the substitution or 

amino-acid replacement models defined above. However, it does not work in combination with the -
ratecat or -cgam options. Thus, you should either use a more classical discrete gamma distribution 



with the -cgam option (or no variations or rates across sites, with the -uni option). 

 
-covext: a slightly different version of Tuffley and Steel's covarion model, in which the rate of the 

site is applied both to the substitution and to the switching processes. That is: under the classical 
covarion model (-covarion), fast sites make more substitutions when in the on state, compared to slow 
sites. But all sites switch between the on and off states at the same rate. In contrast, under the covext 
model, fast sites also switch faster between on and off. In practice, this means that the rate is simply 
applied as a multiplier in front of the tensor product matrix. The advantage of doing this is that it can be 
combined with any model of rate variation across sites (although you may encounter identifiability 
problems in practice).  
 
-mmbl: This is a Bayesian non-parametric version of the mixture of branch lengths (MBL) model 

(Kolaczkowzki and Thornton, 2008, Zhou et al 2008). Basically a Dirichlet process of vectors of 
branch length multipliers. These multipliers are drawn from a gamma distribution, whose inverse 
variance (!) is itself considered as a free parameter. Convergence is challenging under this model. You 

should always check carefully for convergence of the topology and of the continuous parameters. 
 

-gbl <partition>: separate model, with each gene having its own set of branch lengths, that are 

obtained by multiplying the global branch lengths by gene-specific branch length multipliers. These 
multipliers are drawn from a gamma distribution, whose inverse variance (") is itself considered as a 

free parameter. Convergence in the space of topology is challenging under this model. The partition file 
should be specified as follows: 
 
<G> 
nsite_1 nsite_2 ... nsite_G 
where G is the total number of genes, and nsite_g is the number of aligned positions for gene g. 
 

Relaxed clock models: 

 
-cl : strict molecular clock 

-ln : log normal model (Thorne et al, 1998) 

-cir: CIR process (Lepage et al, 2007) 

-wn : white noise process (Lepage et al, 2007) 

-ugam : uncorrelated gamma multpliers (Drummond et al, 2006). 

 
prior on divergence times (by default, a uniform prior): 
 
-bd [<p1> <p2>] : birth death prior. The two parameters p1 and p2 are the hyperparameters of the 

birth death process (p1 = birth rate - death rate, and p2 = birth rate * sampling rate, see Lepage et al 
2007 for details). If two real numbers are given, p1 and p2 will be fixed to the specified values. 
Otherwise, they will be inferred from the data. 
 
-bdhyperprior [<mean1> <stdev1> <mean2> <stdev2>] : birth death hyperprior. The 

two parameters p1 and p2 will be endowed with gamma distributions of means and priors specified by 
the command. Default values are 1, 1, 1, 1 (exponential distributions of mean 1 for both p1 and p2). 
 
 
 



-dir [<chi>] : Dirichlet prior. chi>0 is the hyperparameter (with smaller value resulting in a larger 

variance of the waiting times between successive speciations). chi can be fixed or be inferred from the 
data, depending on whether a real number is specified in the command. Note that in the specific case of 
the Dirichlet prior, analyses with calibrations require chi to be specified. 
 
-cal <calibrations> : impose a set of calibrations see Format section for the exact format. the 

calibrations work only under the uniform prior on divergence times. 
 
-sb [<cutoff>] : activates the soft constraint option (as described in Yang and Rannala, 2006). 

This option is available only under the birth death prior. The cutoff determines how much of the 
probability mass is allowed outside of the proposed boundaries. By default, cutoff = 0.05. 

 
-lb [<p> <c>] : fine tuning of the parameters of the Cauchy lower bound (as the L(t,p,c) in 

paml4.2, see Inoue et al, 2009 for details).  
 
-rp <age> : impose a prior mean age for root. If not specified, then, under the uniform and the 

Dirichlet priors, the root age is uniformly distributed (this is an improper prior, which can lead to 
problems, in particular when no upper bound is specified (which is in itself poor practice). Under the 
birth death prior, on the other hand, if no prior mean age is specified for the root, then the conditional 
distribution implied by the birth death prior is used (it is a proper, but apparently unstable, prior). Thus, 
in all cases, we advise the explicit use of this option. In addition, we strongly suggest to conduct runs 
under the prior (see below) to check the effective prior distribution of the age of the root. 
 
 
Running the models under their prior: 

 
-prior: desactivates all likelihood computations. As a result, the program samples from the prior of 

the model, such as specified by the command. This option works only for molecular dating studies, but 
it is an important one in this context. In general, the prior proposed by the user on the age of the root 
(using the -rp option) is the prior without calibrations, and can sometimes be very different from the 
prior conditional on the calibrations. Therefore, one should always run a MCMC under the prior, and 
check that the distribution of the root's age thus sampled by the MCMC is sufficiently wide (i.e. non 
informative), before proceeding with a posterior sampling. 
 

Data recoding 

 
Data recoding is the generalisation of the RY coding sometimes used for nucleotide sequences. It is 
meant for two things : first, recoding several biochemically similar amino-acids (or bases) as one single 
letter eliminates the potentially saturated signal brought about by repeated substitutions among those 
amino-acids (or bases). Second, it can also be used to remove possible compositional biases (RY 
coding, or for proteins, the case of Arginine and Lysine, whose relative frequency is very sensitive to 
the GC content). 
 
Data recoding has not yet been used very often in practice. Theoretically speaking, it is not totally 
satisfactory: in principle, one would prefer a model that automatically accounts for higher substitution 
rates between equivalent amino-acids, or accomodates variations of the amino-acid composition along 
the lineages. In addition, there is no objective way to compare the "fit" of alternative recoding schemes. 



For instance, comparing cross-validated likelihoods, or computing Bayes factors, between alternative 
recoding schemes would not make sense. But recoding can still be used as an exploratory device. In 
practice, it can sometimes yield interesting results (REF), albeit most often at the cost of a significant 
loss of phylogenetic signal. 
 
You can recode the data by using the -recode command : 

 
-recode <recoding_scheme> 
or 
 
-rec <recoding_scheme> 
 
Three recoding schemes are available: dayhoff6, and hp. They are characterised as follows : 
 
dayhoff6   (A,G,P,S,T) (D,E,N,Q) (H,K,R) (F,Y,W) (I,L,M,V) (C) 
dayhoff4   (A,G,P,S,T) (D,E,N,Q) (H,K,R) (F,Y,W,I,L,M,V) (C= ?) 
hp   (A,C,F,G,I,L,M,V,W) (D,E,H,K,N,P,Q,R,S,T,Y) 
 
You can also define your own recoding, by setting <recoding_scheme> equal to the name of a file 

containing a translation table formatted as follows: 
 
<AA1> <Letter1> 
<AA2> <Letter2> 
.. 
<AA20> <Letter20> 
 
You can propose ‘?’ for a given amino-acid, in which case, it will be simply considered as equivalent to 
"no data" (as the cysteine, in the case of the dayhoff4 recoding). 
 
 



bpcomp 

 
-x <burn-in> [<every> <until>] 
 
defines the burn-in, the sub-sampling frequency, and the size of the samples of trees to be taken from 
the chains under comparison. By default, <burn-in> = 0, <every> = 1 and <until> is equal to 

the size of the chain. Thus, for instance: 
 
-x 100 
 
defines a burn-in of 100 
 
-x 100 10  
 
a burn-in of 100, taking one every 10 trees, up to the end of each chain, and  
 
-x 100 10 1000 
 
a burn-in of 100, taking one every 10 trees, up to the 1000th point of the chains (or less, if the chains 
are shorter). If the chain is long enough, this implies a sample size of 90. 
 
-o <basename> 
 
outputs the results of the comparison in files with name <basename>, combined with several 

extensions: 
 
<basename>.bpcomp : summary of the comparison 

<basename>.bplist : tabulated list of bipartitions (splits), sorted by decreasing discrepancy 

between the chains. 
<basename>.con.tre : consensus tree based on the merged bipartition list. 

 
-ps 
 
activates the postscript output (this requires LateX to be installed on your computer). 
 
-v 
 
make a 'verbose' account of the bipartitions in the .bplist file. This allows one to more easily spot 

which groups of taxa display discrepancies in their supports obtained across the runs. 
 

-c <cutoff> 
 
tunes the cutoff for the majority rule consensus (posterior probability support under which nodes are 
collapsed in the final consensus tree). By default, the cutoff is equal to 0.5, although strictly speaking, 
standard significance thresholding would imply considering only those supports above a standard value 
of 0.95 as significant. 
 

 



readpb 

 
-x <burn-in> [<every> <until>] 
 
defines the burn-in, the sub-sampling frequency, and the size of the samples of trees to be taken from 
the chain. The syntax is the same as for bpcomp. 

 
-c <cutoff> 
 
tunes the cutoff for the majority rule consensus. By default, the cutoff is equal to 0.5 (see bpcomp) 

 
-r outputs the mean posterior rates at each site. 

 
-rr outputs the mean posterior exchange rates. 

 
-ss outputs the mean posterior profile at each site. with -ps : output the profiles as graphical logos. 

 
-m  outputs a histogram approximating the posterior distribution of the number of components. 
 

-cl clustering of the profiles sampled during the MCMC: this is a single-link clustering, that has too 

parameters: 
 -md <dist> : the cutoff distance between profiles, that is, if the distance between two 

profiles is less than <dist>, they will end up in the same cluster, and 

 -ms <size> : the minimum size of the clusters to be displayed in the final output, given that 

all clusters of size smaller than <size> will be merged together into a "garbage cluster". Defaults are 

<dist> = 0.03 and <size> = 10. 
 

-s save the subsample into a file. This can be useful if a chain is very big, and you want to subsample 

it to save disk space. Once a subsample has been saved, you can call readpb directly on it. For 

instance: 
 
readpb -x 1000 100 11000 <chainname> 
 
will save a sample of 100 points regularly spaced, taken from the chain <chainname>. This sample 

will be saved into a file called <chainname>_sample.sample. Then: 

 
readpb -cl <chainname>_sample.sample 
 
will perform a hierarchical clustering on this subsample. 
 
-ps 
 
activates the postscript output. If readpb is used for computing a consensus, a postscript tree will be 

produced (this requires LateX to be installed on your computer). If readpb is used for clustering 

modes, it will result in a postscript file displaying the logos of the profiles of the clusters. 
 
 



readdiv 

 
readdiv -x <burn-in> [<every> <until>] [other options] chainname 
 
This program works like readpb. It will output several files: 
<chainname>_sample.dates 
<chainname>_sample.chronogram 
<chainname>_sample.labelss 
 
-x <burn-in> [<every> <until>] 
 
defines the burn-in, the sub-sampling frequency, and the size of the samples of trees to be taken from 
the chain. 
 
-ps activates the postscript output. 
 
 
How to use birth death and dirichlet priors on divergence times for calibrated analyses. 

 
As mentioned earlier, if the hyperparameters of the birth death and the Dirichlet priors can be 
considered as free parameters in an analysis without calibration, they have to be fixed in a calibrated 
analysis (because of normalization problems). However, to which value to fix them is not a priori 
evident. A solution to this problem is to proceed in 3 steps: 
(1) run an analysis without the calibration, and with the required prior, and with free hyperparameters; 
(2) use this analysis to estimate these hyperparameters, and 
(3) re-run an analysis, this time with the calibrations, and with the hyperparameters fixed to the 
empirical values just obtained. 
 
To facilitate this procedure, readdiv outputs the posterior mean values of the hyperparameters of the 

prior (thus, of p1 and p2 for the birth death, or of chi for the Dirichlet prior), which are the natural 
Bayesian estimates that we need to obtain (step 2), in order to proceed with step 3. 
 

 



bf 

 
bf -cov <covname> [other options] <chainname> 
 

This program computes Bayes factor using thermodynamic integration. It works only under the normal 
approximation. The integration consists in running a quasi-static chain from one model to the other, 
and then back (see Lartillot and Philippe, 2006). The program stops automatically, and a confidence 
interval for the logarithm of the Bayes factor is proposed in the <chainname>.log file. The 

confidence interval accounts for the thermic lag and the discretization error, but not for the sampling 
error, which however, should be negligible, at least for the long integrations. 
 

By default, the integration is between the specified relaxed clock model and the deconstrained model. 
The relaxed clock model can be specified using the same option as for pb (it is the log normal model 

by default). For instance: 
 
bf -cov moc10.oes -ln moclnbf 
 

computes the Bayes factor between the log-normal and the deconstrained model, for the moc10.oes 

dataset. 
 

Two other types of integration can be performed: 
 
-prior 
 
between the specified prior on divergence time (options to specify them are as in pb) and the uniform 

prior on divergence times. 
 

-auto 
 
between the two auto-correlated models (CIR and log-normal). A positive value means a support in 
favor of CIR over the log-normal model. 
 

To control the precision (and thus, the duration) of the integration: 
 

-short 
 
burn-in of 100, integration over 1000 points (takes a few hours) 
 

-long 
 

burning of 1,000, integration over 10,000 points (takes about one day) 
 

-vlong 
 
burning of 1,000, integration over 10,000 points, but saving every 10  (takes more than one week) 
 
 

 



tree2ps 
 

tree2ps [options] <treefile> 
 
This program converts a tree in newick format (<treefile>) into a postscript tree. 

 
-o <output> 
 
will output the postscript tree into <output>.ps. 
 
-r <outgroup> 
 
reroot the tree. 
 
+l (-l) 
 
with (without) branchlengths. 
 
+p (-p) 
 
with (without) posterior probabilities at nodes. 
 
 



ppred 

 
 
ppred -x <burn-in> [<every> <until>] [additional options] name 
 
For each point of the sample, ppred simulates a replicate using the parameter values defined by this 

point. All replicates are written as standard datafiles. You can then evaluate any statistic of interest on 
them, as well as on the true original dataset, so as to compute the deviation between the observed and 
the mean value of s under the null distribution, the p-value (number of times the simulated value is 
more extreme than the observed value), the z-score, etc. 
 

There are three pre-defined posterior predictive tests. They are called using the -div, -comp and -
sat options, and measure the biochemical site-specificity, the compositional homogeneity, and the 

saturation, respectively. When using one of these options of ppred, the replicates are not written into 

files. Instead, the program directly computes the test statistics on them, and only outputs the z-score 
and p-values. In addition, a special posterior predictive testing framework is available for clock models 
(-clockrate option) 

 

Biochemical specificity (option -div) 
 

Under this option, the test statistic is the mean number of distinct amino acids observed at each column 
(the mean is taken over all the columns). This test statistic is meant as a way of measuring how well the 
site-specific biochemical patterns are accounted for by a model (see Lartillot et al, 2007). Often, 
standards models such as WAG, JTT or GTR are rejected by this statistic, except CAT, which should 
normally not be rejected, or very weakly. 
 

Compositional homogeneity (option -comp) 

 
This test statistic measures the compositional deviation of each taxon. The deviation is measured as the 
sum over the 20 amino-acids of the absolute differences between the taxon-specific and global 
empirical frequencies. The program also uses a global statistic, which is the maximum deviation over 
the taxa. This alleviates multiple testing, but on the other hand, only gives you a global answer (i.e. 
whether there are significant compositional deviations, but not who is significantly deviating). 
 
Neither CAT, nor the standard WAG, JTT or GTR models, can account for the non-stationarity of the 
equilibrium frequencies. Therefore, and as you will probably see by yourself, in most cases, all these 
models are rejected by true data. For the moment, there is not yet any efficient model against this 
potential problem. But two workable solutions may be explored : 
-  removing the most deviating genes from your concatenation : this requires running the test on each 
gene separately, and sorting the genes, by decreasing z-score. 
-  alternatively, you may try to remove the most deviating taxa. Actually, there is an option to do this in 
ppred : 

 
../ppred -comp -t 2 -x 100 10 rnapol1 
 



will output a dataset where all taxa whose compositional z-score is greater than 2 have been removed. 
This dataset can then be used to make a new run. 
 

Saturation test (option -sat) 
 

In phylogenetics, saturation refers to the problem of multiple substitutions at a given site. Such multiple 
substitutions blur the phylogenetic signal. In addition, they create spurious convergences between 
unrelated taxa. Under challenging conditions (poor taxonomic sampling, or fast evolving species), 
these convergences can be mistaken for true phylogenetic signal, thereby creating systematic errors  
 

A good statistical test, to see whether a model is likely to produce artefacts, is therefore to measure how 
well the model anticipates sequence saturation. If the model does not anticipate saturation correctly, 
then, it will be more 'naïve', i.e. more prone to mistakingly interpreting spurious convergences as true 
phylogenetic signal, and as a consequence, will more likely create artefacts (Lartillot et al., 2007). 
 
The saturation index is defined as the number of homoplasies (convergences and reversions) per sites. 
However, even assuming the topology is known, convergences and reversions cannot be assessed just 
by looking at a dataset, but require the full substitution history to be reconstructed. To do this, one uses 
stochastic substitution mapping. Technically, the test thus proceeds as follows: 
 
../ppred -sat -x 100 10 rnapol1 
 
for each parameter value sampled from the posterior distribution, (i.e. each point of the MCMC run), 
two stochastic mappings are performed: one conditional on the true data at the leaves ('observed' 
mapping), and one unconstrained ('predicted'). The saturation index is then measured for both, 
and the procedure is repeated for each point of the run (here, 1 every 10). Finally, the 
observed and the predicted distributions of the saturation index are summarised by their 
means and variances. which are output by the program. Note that, since the 'observed' value 
of the statistic is itself a distribution, it is not possible to define a sensible p-value for that test. 
But by simply comparing the two confidence intervals offered by the two means, and their 
corresponding variances, you can get a good idea of how well the model handles 
saturation.The ppred program also makes two files containing the histograms of the two 
distributions. These histograms can then be jointly plotted using gnuplot, or some other 

program. 
 
For instance, in the case of brpo.ali, the test was conducted under WAG: 
observed homoplasy....:. 3.74290 +/- 0.0858103 
posterior predictive..:. 3.32902 +/- 0.025057 
 

and CAT: 
observed homoplasy....:. 4.92162 +/- 0.219208 
posterior predictive..:. 4.86584 +/- 0.44926 
 
In the present case, it is clear that (1) WAG infers a much lower saturation of the data than 
CAT, and that (2) it predicts significantly less saturation than it observes. Both facts indicate 
that WAG tends to underestimates saturation, which in turn may cause systematic errors, or 
at least distorsions of the posterior probabilities. On the other hand, CAT seems to correctly 
account for the observed saturation. 



 

Testing branch lengths induced by clock relaxation (option -clockrate) 
 

Under this option, for each parameter value sampled from the posterior distribution the program 
produces two trees: one with the branch lengths specified by that specific parameter value (thus, branch 
lengths taken from the posterior distribution), and saved in the .postlength file, and one with posterior 
predictive branch lengths: that is, conditional on the current times and parameters, a complete rate 
history is simulated along the tree, and the branch lengths induced by this rate history are computed, 
and written in the .predlength file. In thi way, patterns of branch lengths induced by the model can be 
compared with the patterns directly inferred from the data.  



 

6. Cross-Validation 
 

Cross-validation (CV) is a very general and reliable method for comparing models. The rationale is as 
follows: the dataset is randomly split into two (unequal) parts, the learning set and the test set. The 
parameters of the model are estimated on the learning set (i.e. the model is 'trained' on the learning set), 
and these parameter values are then used to compute the likelihood of the test set (which measures how 
well the test set is 'predicted' by the model). The overall procedure has to be repeated (and the resulting 
log likelihood scores averaged) over several random splits. 
 

CV is computationally heavy. Note also that it does not work if the continuous gamma or the Dirichlet 
process on the site-specific rates is activated: you have to be under the discrete gamma model, or the 
uniform rate model. On the other hand, CV can be easily parallelized, as each replicated random split 
can be processed independently. To achieve an optimal parallel processing, a series of distinct 
programs are proposed in PhyloBayes, corresponding to each step of the method: 
! prepare the replicates, using cvrep; 

! run each model under each replicated learning set, using pb; 

! compute the cross-validated log likelihoods scores (i.e. the likelihood of each test set, averaged over 
the parameter values estimated by pb on the corresponding learning set), using readcv; 

! pool all the cv-scores, and combine them into a global scoring of the models, using sumcv. 
 

First, to prepare the replicated splits: 
 

cvrep -nrep 10 -nfold 10 -d brpo.ali cvb 
 

Here, -nrep 10 means that we are asking for 10 replicates, and -nfold 10 that we want to 

perform 10-fold cross validation: that is, for each replicate, the learning set will amount to 9/10, and the 
test set for 1/10, of the initial dataset. The replicates are saved under files using the specified prefix 
(here, cvb): 
 

cvb0_learn.ali, cvb0_test.ali, 
cvb1_learn.ali, cvb1_test.ali, 
... 
 

Next, you run a MCMC under each learning set, and for each model you want to compare, using pb. It 

is highly recommended to do these runs under a fixed topology (you can use the topology estimated by 
the model itself on the full dataset): this will be much faster. For instance, if you want to compare 
WAG and CAT: 
 

pb -d cvb0_learn.ali -T brpo.tree -x 1 1100 CATcvb0_learn.ali 
pb -d cvb0_learn.ali -T brpo.tree -x 1 1100 -wag WAGcvb0_learn.ali 
 

and of course, the same should be done for the other 9 learning sets. 
 

IMPORTANT: the name of the chains should be defined as here above, by prefixing the name of the 
dataset with some prefix standing for the model (e.g. CATcvb0_learn.ali). This is necessary for 

further processing of the resulting chains. 
 

Once the chains have proceeded for all the replicates and all the models, you can compute, for each of 



them, the cross-validated likelihoods, using readcv. 
 

readcv -nrep 10 -x 100 1 CAT cvb 
readcv -nrep 10 -x 100 1 WAG cvb 
 

The cross-validation score, for each replicate, is the likelihood under the test set, averaged over the 
posterior distribution of the learning set. Here, it is approximated by averaging over the parameter 
values visited by the chain run on the learning set, discarding a burnin of 100 points, and taking every 
point thereafter. The logarithm of the resulting average is stored into a file with a .cv extension. There 

is one such file for each replicate (thus, cvb0.cv, cvb1.cv, ..., cvb9.cv). 
 

Note that readcv will process each replicate successively, which may take a very long time. If you 

want to get a first rough idea of the score, do not hesitate to subsample (e.g. -x 100 10). Also, if you 

are working on a multiprocessor, readcv allows you to parallelize the likelihood computation 

procedure, in several ways. First, you can explicitely call readcv on only one replicate: 
 

readcv -rep 2 -x 100 10 CAT cvb 
 

This command will process only the replicate number 2. This allows you to split the work across 
several computers, according to what is most convenient for you. Second, you have the -bg 

(background) option, which will directly send the 10 jobs in parallel, all in the background mode. 
 

readcv -bg -nrep 10 -x 100 10 CAT cvb 
 

And if you are working on a 'qsub' grid, the following command will send the 10 jobs in the queue: 
 

readcv -qsub -nrep 10 -x 100 10 CAT cvb 
 

Finally, if you just want to prepare the 10 scripts, without launching them: 
 

readcv -qprep -nrep 10 -x 100 10 CAT cvb 
 

Once all the cross-likelihood scores, for all the models and all the replicates, have been obtained, you 
need to gather them, and compute summary statistics: 
 

sumcv -nrep 10 WAG CAT cvb 
 

You can use this command for more than 2 models (provided that the mean cv-likelihoods are 
available, and are all stored into the relevant files, with the .cv extension): 
 

sumcv -nrep 10 WAG CAT GTR cvb 
 

This last program will average the cv-log-likelihood scores over replicates, using the leftmost model 
(here WAG) as the reference. 
 
 



7. Priors 
 

Branch lengths 

 
-lexp 

bl ~ iid Exponential of mean µ 
 
-lgam 

bl ~ iid Gamma of mean µ and variance #µ2 (reduces to the exponential distribution when  # = 1). 

 
µ ~ Exponential of mean 0.1 

# ~ Exponential of mean 1 

 

Rates across sites 

 
-cgam 

r ~ iid Gamma of mean 1 and variance 1/$ 

 
-dgam <ncat> 

r ~ iid discretized Gamma of mean 1 and variance 1/$ 

 
-ratecat 

r ~ Dirichlet process of granularity % and Base distribution Gamma of mean 1 and variance 1/$ 

 
$ ~ Exponential of mean 1 

% ~ Exponential of mean 1 

 

Profiles 

 
-ncat 1 

& ~ Uniform 

 
-cat 

& ~ Dirichlet process of granularity ' and base distribution G0 

 
-statflat 

G0 = Uniform 
-statfree 

G0 = generalized Dirichlet, of center &0 and concentration ( 

 
&0  ~ Uniform 

( ~ Exponential of mean S (where S is the number of states, 4 for nucleotides, 20 for amino acids) 

' ~ Exponential of mean 10. 



Relative exchange rates 

 
rr ~ iid Exponential of mean 1 
 

Relaxed clock parameters 

 
Rates are relative (i.e. dimensionless). They are multiplied by a global scaling factor, µ (expressed in 

number of substitutions per site and per unit of relative time). See Lepage et al for more details. 
 
-ln 

) ~ lognormal autocorrelated process of variance parameter * 

 
-cir 

) ~ CIR process of variance parameter * and autocorrelation parameter + 

 
-ugam 

) ~ iid gamma of variance parameter * 

 
µ ~ Exponential of mean 1 

* ~ Exponential of mean 1 

under CIR: 
+ ~ Exponential of mean 1 with the additional constraint that + > */2 

Divergence dates 

 
Divergence dates are relative (dimensionless): root has divergence 1, and leaves divergence 0. These 
relative dates are then multiplied by a global scale factor Scale (expressed in Million of years) which is 
tune by the -rp (root prior) option. 
 
-uni 
t ~ uniform 
 
-dir 

t ~ Dirichlet prior of concentration parameter , (when , =1, prior is uniform). 

, ~ Exponential of mean 1 
 
-bd 

t ~ birth death process of parameters - (birth rate), µ (death rate) and . (sampling fraction). To avoid 

identifiability, we set p1=--µ,  and p2=-. 

p1 ~ Exponential of mean 1 
p2 ~ Exponential of mean 1 
 
Scale ~ Uniform over R+ by default: this is a pseudo prior. Override if possible. 
 
-rp <meanrootage> 

Scale ~ Exponential of mean meanrootage. 



Covarion model 

 
 
The covarion parameters can be expressed as  
rate from OFF to ON:  s01 = /. (1-p0) 

rate from ON to OFF:  s10 = /. p0 

where / is the rate of the ON-OFF process, and p0 the stationary probability of the OFF state. 

 
/ ~ Exponential of mean 1 

p0 ~ Uniform over [0,1] 
 

Mixture of branch lengths 

 
The mixture of branch length is emulated by using branch length multipliers -ij, for site i and branch j. 

if we denote by 0i the vector of multipliers at site i (the -ij, for j=1..2P-3), then 

0 ~ Dirichlet process of base distribution H0, and granularity 1 

H0 = product of independent gamma of mean 1 and variance 1/! 

! ~ Exponential of mean 1 

1 ~ Exponential of mean 1 

 

Gene-specific branch length multipliers 

 
If we denote by 2g the vector of multipliers for gene g 

2 ~ product of independent gamma of mean 1 and variance 1/" 

" ~ Exponential of mean 1 
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